What Have We Learned From Saturn’s Rings?

Over the past 13 years, the Cassini space probe has shown us just how complex and dynamic the rings of Saturn truly are. What would Saturn be without its beautiful system of rings?

The 20-year mission is coming to an end later this week when the probe makes its final destructive plunge into Saturn. As part of its grand finale, Cassini has flown closer to the rings than ever before, first grazing the outermost edges of the rings before taking the risky leap of diving through the gap between the rings and Saturn. 

One of the surprises was that it’s quite empty in this gap. This is very different to when Cassini was bombarded by hundreds of dust particles per second as it moved past the outer rings late last year. But it meant good news for the mission as this final stage had a better chance for success if there was less material in the way. During a recent ring dive in August, instead of orientating Cassini so that it flew antenna-first through the gap (offering it more protection), the spacecraft was turned around allowing it to capture a fantastic view of the rings as it dived past. 

Over the centuries, as Saturn’s rings have been observed in finer detail, they have been broken into discrete sections. They are named alphabetically in order of discovery, which means from innermost to outermost the order is D, C, B, A, F, G and E. We know that the rings are mostly made of water ice, but it’s not clear how they formed or even how old they are.

“So much has been learned, including the ability to gaze with wonder and awe at the amazing Solar System we are part of.”

The fact that they are still bright, rather than coated in dust, suggests a young age – perhaps just 100 million years old, placing their formation in the time of the dinosaurs.

This is consistent with Cassini data, but this theory also presents a problem: it means that a previous collection of moons had a fairly recent and mighty smash-up, creating the rings and five of Saturn’s current-day moons.

Alternatively, Cassini has also shown that there is a lot less dust entering the Saturn system than was originally expected. This makes it possible for the rings to be both ancient and bright, having formed early in the life of the Solar System. Furthermore, interactions within the rings might dust them off and keep them looking young.

For Saturn’s outermost E ring the source is pretty clear. The moon Enceladus orbits within this ring and Cassini observations have directly traced features in the ring back to geysers erupting from Enceladus’s surface.

Prometheus interacts with the ring once every orbit, when it reaches the point that takes it furthest away from Saturn and closest to the F ring. As Prometheus orbits faster than the ring material, a new streamer is created that is ahead of the old one with every orbit.

Several of Saturn’s smaller moons reside within and carve out gaps in the rings, and Cassini has shown them to have bulges around their middles.

The moon Pan was responsible for clearing the A ring’s large Encke Gap. As it collects the ring material, Pan’s gravity is not strong enough to spread the accumulated matter across its surface, and instead a striking ridge develops. 

The tiny moon Daphnis is one of seven moons newly discovered by Cassini. It is just 8km across and as it orbits inside the A ring’s small Keeler Gap, it pulls on the ring particles leaving waves in its wake. 

Cassini has certainly achieved its mission objectives to explore Saturn, its atmosphere, magnetosphere and rings and to study Saturn’s moons, particularly Titan. So much has been learned, including the ability to gaze with wonder and awe at the amazing Solar System we are part of.

This story was written by Tanya Hill in The Conversation. Materials may be edited for content and length.

Discover More: